# PerkinElmer<sup>\*</sup> For the Better

... efficient, productive and cost effective approach

Making Semi-Volatile Analysis Safer for our Environment: More Accurate, Precise, Clean and Sensitive

> NEMC Conference Orange County, CA August, 2016

Lee Marotta, Sr Field Application Scientist

© 2016 Perkin Elmer





- Benefits of reducing sample size
- Experiments with semi-volatile analysis
- Technologies
  - Inlet
  - MS

#### Data

- PAH GC/MS
- Pesticdes GC/ MS
- Site study EPA method 508 GC/ECD
- Site study EPA method 8270 GC/MS

## Conclusion







#### **Reducing Sample Amount**

... efficient, productive and cost effective approach



# Why should we reduce sample amount?

© 2016 Perkin Elmer

# Using 1mL instead of 1L sample equals more profits...

#### By enhancing productivity

- Reducing time for extraction
- Elimination of concentration step increases throughput
- Able to use faster methods, such as SPE

#### By reducing costs

- Save on expensive extraction solvent required for liquid/liquid extractions
- Save on precious refrigerator space and glassware
- Save on disposal costs of recovered solvents
- Save on shipping costs

#### By increasing instrument uptime

Injecting less sample matrix  $\implies$  cleaner system  $\implies$  more time running samples

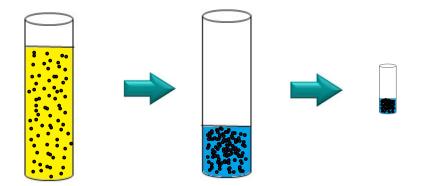
#### By delivering better performance

- Meeting and/or achieving enhanced detection limits
- Enhancing recoveries
- Optimizing dynamic range







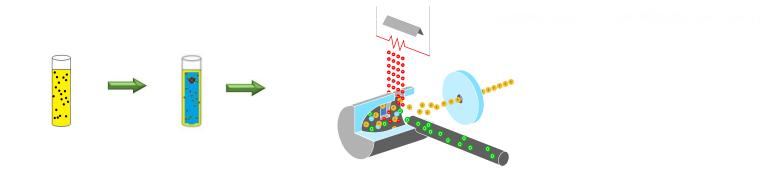



... efficient, productive and cost effective approach



1 mL sample volume (or 40mL or 100mL) 1 liter liquid/liquid extraction: Disadvantages

- 1.0 liter of sample (0. 2ug/L detection limit)
- Extract with 300 mL dichloromethane (DCM)
- Separate phases
- Concentrate to 1mL (0.2ug/mL)
- Inject








# Enhance sample prep time and save on laboratory costs!





- 1mL sample volume (or 40mL)
- Extract with 1mL of DCM
- Separate phases
- Inject organic phase or use SPE
- Inject!

- Advantages:
  - Reduced operating costs
  - Enhanced instrument uptime!
  - Faster sample prep improves lab productivity and efficiency
  - GREENER analysis!!!



... efficient, productive and cost effective approach

# First Experiment Investigating PAH at varying injection volumes





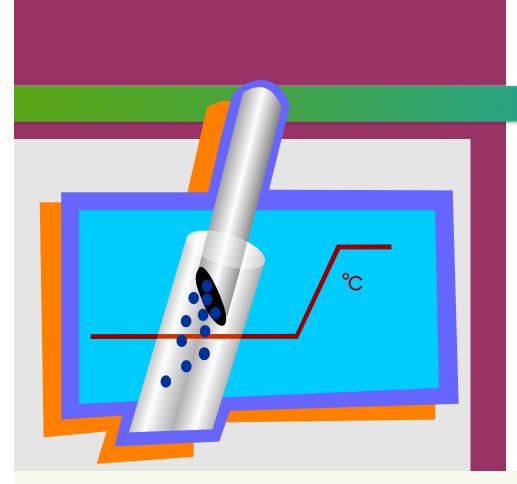
| Injection<br>Volume | Acquisition | Lowest Conc<br>Analyzed (µg/L) | Signal to Noise<br>(ave of 16 targets) |
|---------------------|-------------|--------------------------------|----------------------------------------|
|                     |             |                                |                                        |
| 1μL                 | Full Scan   | 0.20                           | 70 to 1                                |
| 1μL                 | SIM         | 0.20                           | 420 to 1                               |
|                     |             |                                |                                        |
| 5μL                 | Full Scan   | 0.06                           | 190 to 1                               |
| 5μL                 | SIM         | 0.06                           | 770 to 1                               |
|                     |             |                                |                                        |
| 10µL                | Full Scan   | 0.06                           | 440 to 1                               |
|                     |             |                                |                                        |
| 50µL                | Full Scan   | 0.01                           | 500 to 1                               |

... data collected in Simultaneous Full Scan/Sim



#### HUMAN REALTH | ENVIRONMENTAL REALTH

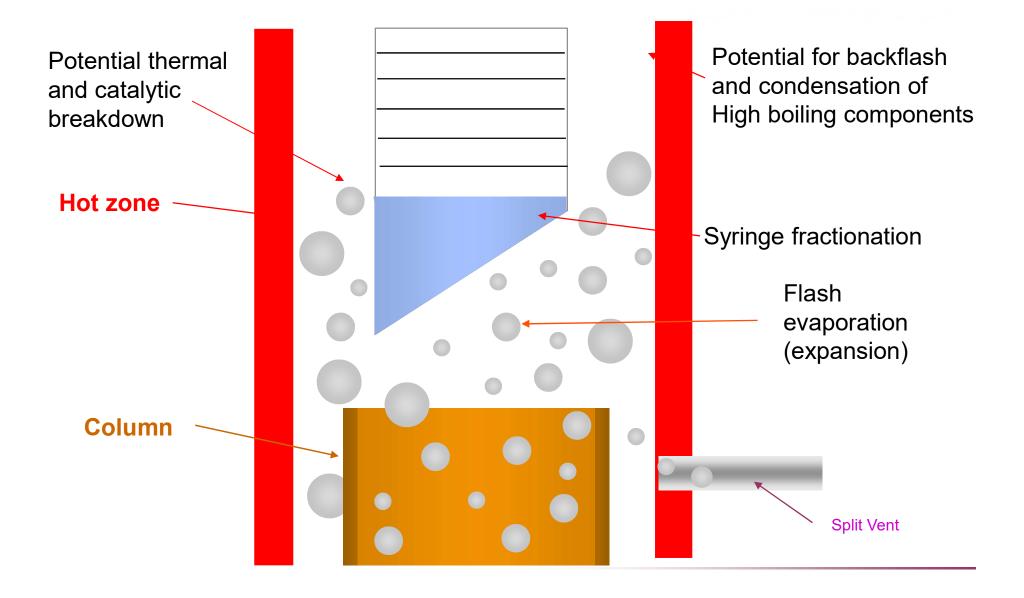
| Sample Amount                | Amount Matrix Injected (X) |                |  |
|------------------------------|----------------------------|----------------|--|
| Sample Amount                | 1μL Injection              | 10µL Injection |  |
|                              |                            |                |  |
| 1 liter                      | X                          | 10X            |  |
| 0.1 liter                    | 0.1X                       | X              |  |
| 0.04 liter                   | 0.04X                      | 0.4X           |  |
| 0.01 liter                   | 0.01X                      | 0.1X           |  |
| 0.001 liter no concentration | 0.001X                     | 0.01X          |  |


\*X represents the amount of matrix injected from a 1L sample volume which was concentrated to 1mL



... efficient, productive and cost effective approach

Why use controlled volatilization (solvent purge) instead of hot splitless injections?


... enhanced precision and accuracy!



© 2016 Perkin Elmer

### Disadvantages to HOT (flash-vaporizing) injections





#### Keeping your analytes in the liner: Problems with backflash



- Backflash of analytes due to vapor expansion volume of solvent in hot injector exceeding the available volume of liner ... full injection will not make its way to column.
- Vapor (with sample) can enter pneumatics causing contamination requiring maintenance

#### Affect

- Poor precision and recovery
- Condensation of high boiling components causing discrimination
- Carryover into later injections causing "ghost peaks" and poor performance

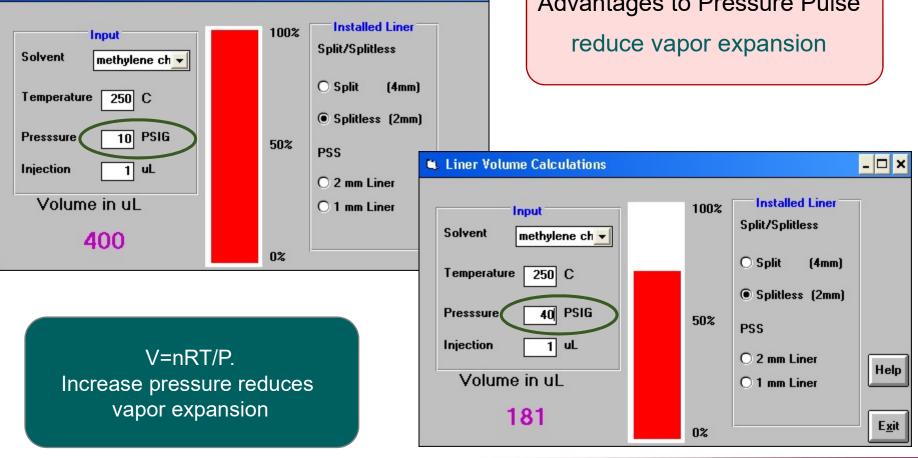
| Liner Volume Calculations |      |                                                       | - 🗆 ×         |
|---------------------------|------|-------------------------------------------------------|---------------|
| Solvent methylene ch -    | 100% | Installed Liner<br>Split/Splitless                    |               |
| Temperature 250 C         |      | <ul><li>Split (4mm)</li><li>Splitless (2mm)</li></ul> |               |
| Presssure 10 PSIG         | 50%  | PSS                                                   |               |
| Volume in uL              |      | O 2 mm Liner<br>O 1 mm Liner                          | Help          |
| 400                       | 0%   |                                                       | E <u>x</u> it |

# Why does this happen ... avoid Backflash



- Liner Volume ... equation of a cylinder
  - (Liner length)(π) r<sup>2</sup>
    - Example for a 4cm x 2mm liner:
    - (4cm)(0.2cm/2)<sup>2</sup>π
- Parameters to consider (V = nRT/P)
  - Injector temperature
  - Injection volume
  - Injector pressure
  - Solvents (have different expansion volumes)

| 🛎 Liner Volume Calculations                                                                                 |             | <u>- 🗆 ×</u>                                                                                                    |
|-------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| Input<br>Solvent methylene ch v<br>Temperature 250 C<br>Presssure 10 PSIG<br>Injection 1 uL<br>Volume in uL | 100%<br>50% | Installed Liner<br>Split/Splitless<br>O Split (4mm)<br>© Splitless (2mm)<br>PSS<br>O 2 mm Liner<br>O 1 mm Liner |
| 400                                                                                                         | 0%          | E <u>x</u> it                                                                                                   |
| Vapor expansion greater than<br>liner volume                                                                |             |                                                                                                                 |


... let's discuss how to eliminate exceeding liner volume via vapor expansion

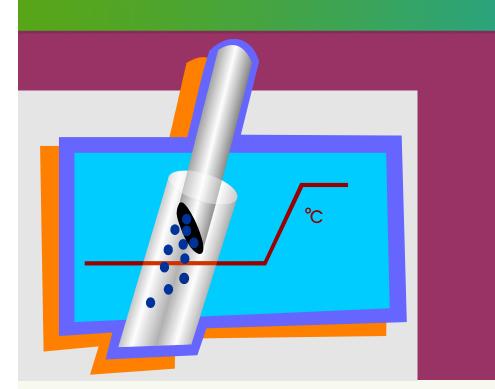


#### Effect of Pressure

🐛 Liner Volume Calculations

Advantages to Pressure Pulse reduce vapor expansion

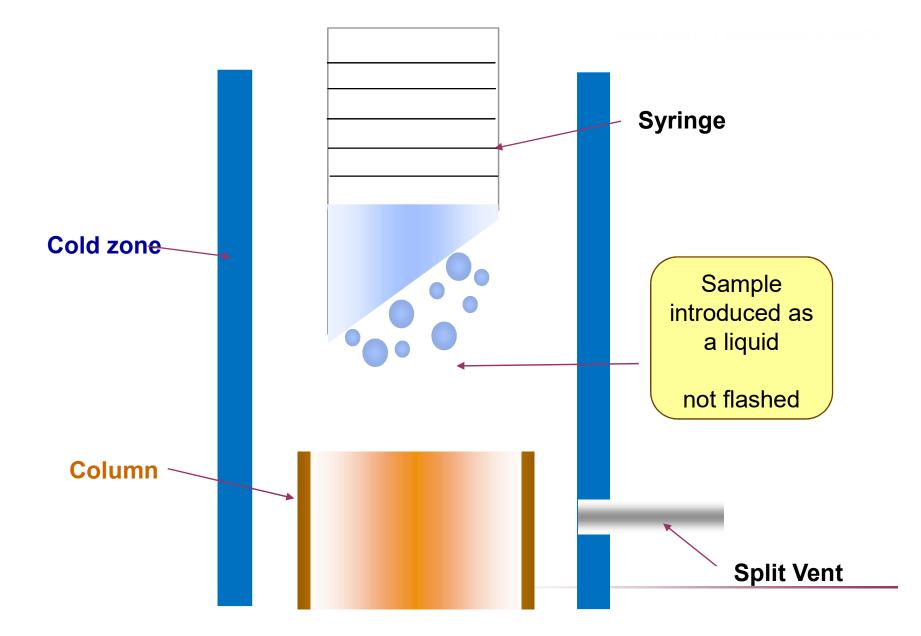





#### Benefits of Controlled Volatilization

... efficient, productive and cost effective approach

Temperature programmed injection is superior than splitless pressure-pulsed (PP)


... better results ... improved performance!

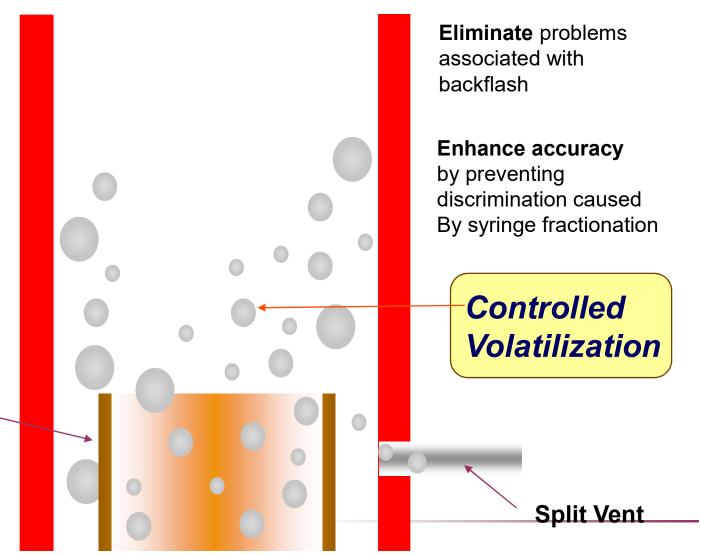


© 2016 Perkin Elmer

## Advantages of a Programmed Injection



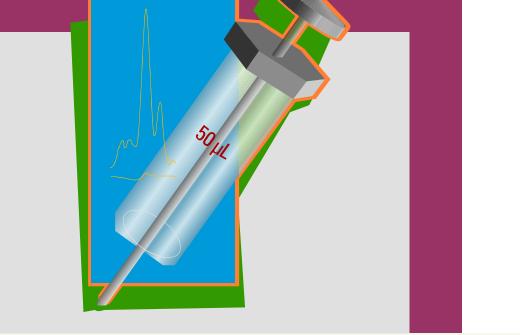





**Enhance recoveries** by significantly minimizing high boiler condensation

#### **Enhance recoveries**

by reducing or preventing thermal and catalytic breakdown of thermally labile and active targets

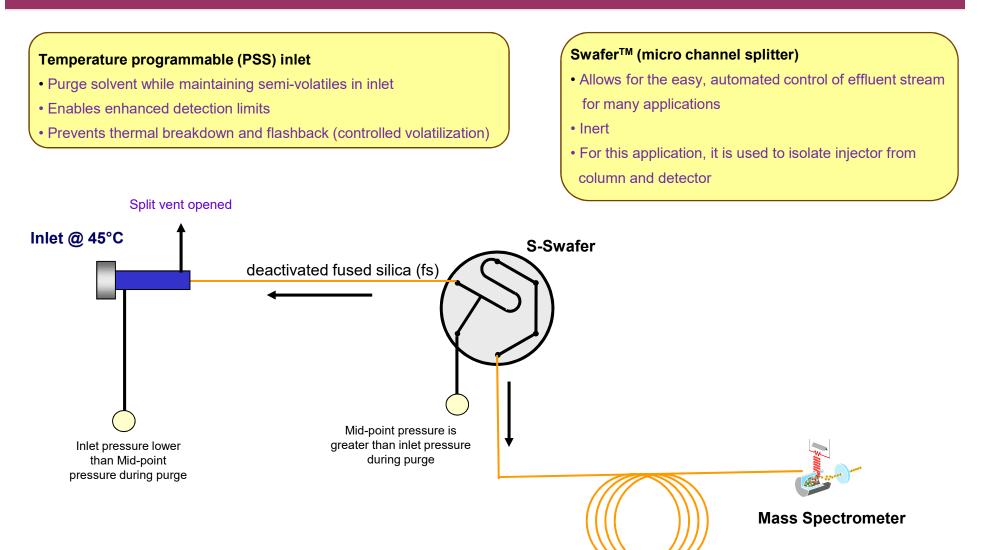

Column ~



#### Do we want even better detection limits?



... efficient, productive and cost effective approach

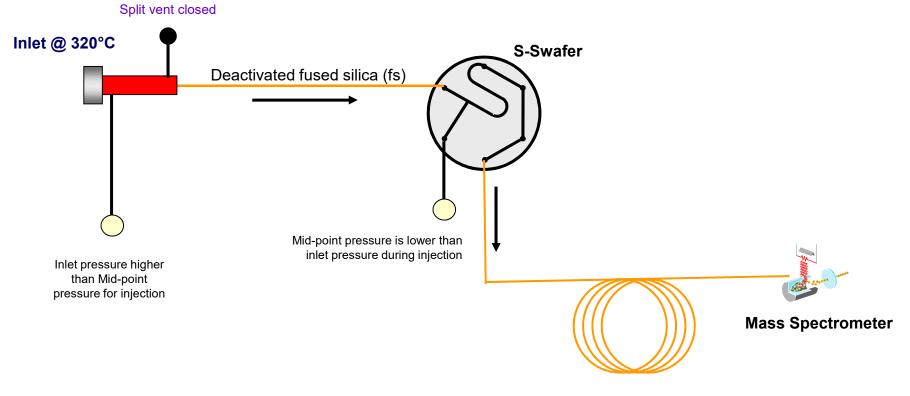


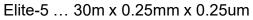

The Technique of Solvent Purge for semi-volatile analysis Enhanced Solvent Purge Injections

© 2016 Perkin Elmer

#### Purge Pneumatics with Swafer – Solvent Purge Step



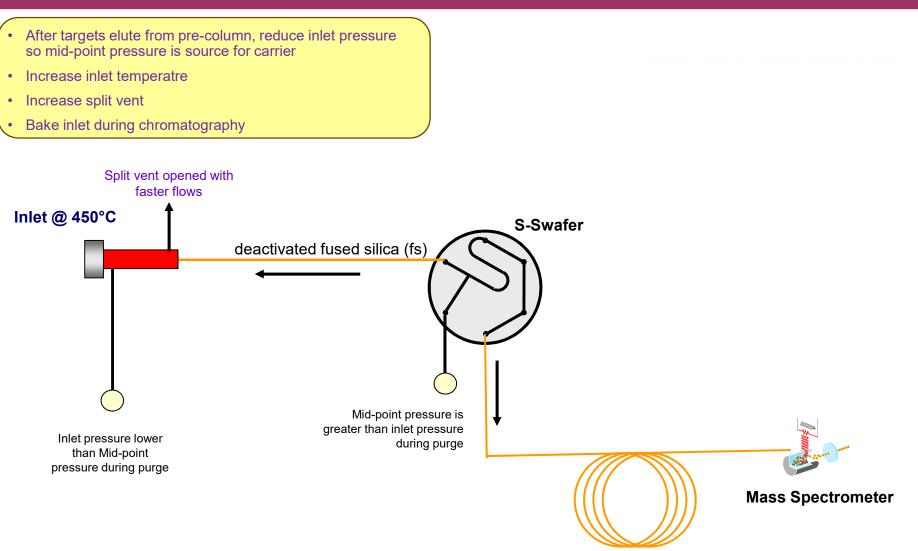




Elite-5 ... 30m x 0.25mm x 0.25um

## **Injection Step**



- Increase inlet pressure so it is the carrier source
- Heat up inlet to desired final temperature








## **Bake Step**





Elite-5 ... 30m x 0.25mm x 0.25um

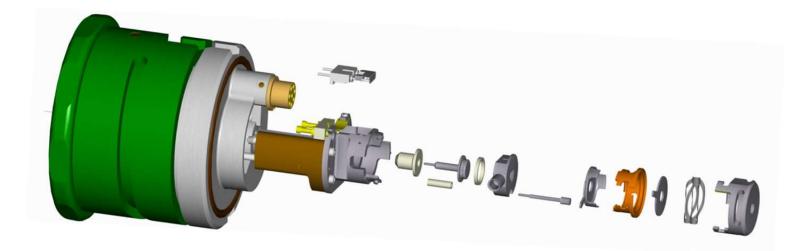
## Clarus SQ 8<sup>™</sup> GC/MS



... efficient, productive and cost effective approach



Technology Advancements

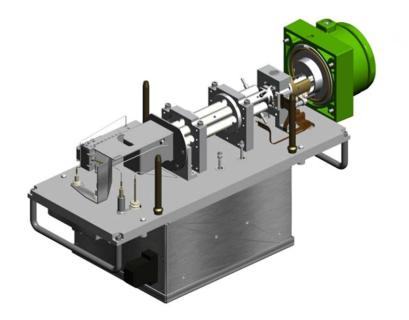

Getting more from your GC/MS!

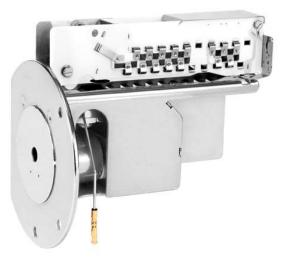
Enhancing detection limits and performance!



HUMAN HEALTH | ENVIRONMENTAL HEALT

# Now it is "Plug and Play" with a twist no wires to remove





Change source components in under 5 minutes with no tools



# Clarifi Detector

- Enhance Sensitivity
- Increase Operating Range
- More Flexibility
- Longer Life Less Downtime
- Enhance Library Matches





... improve detection limits and robust (increase throughput)!

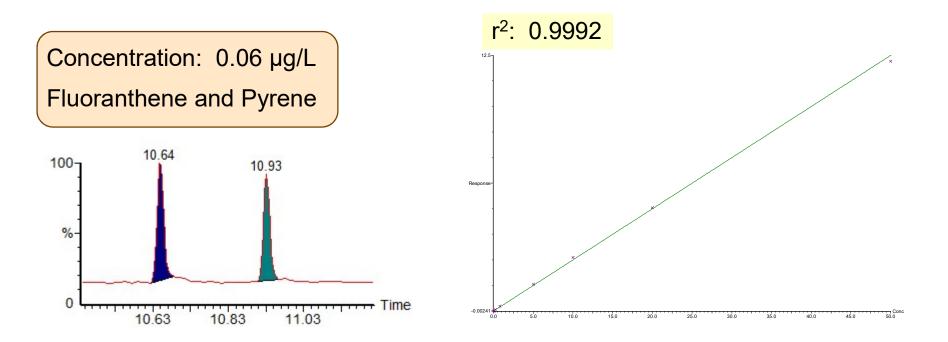
## Clarus SQ 8<sup>™</sup> GC/MS



... efficient, productive and cost effective approach



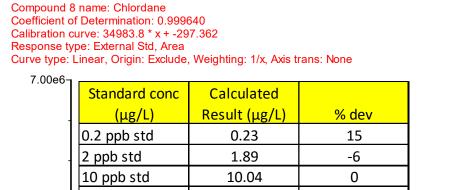
# Data

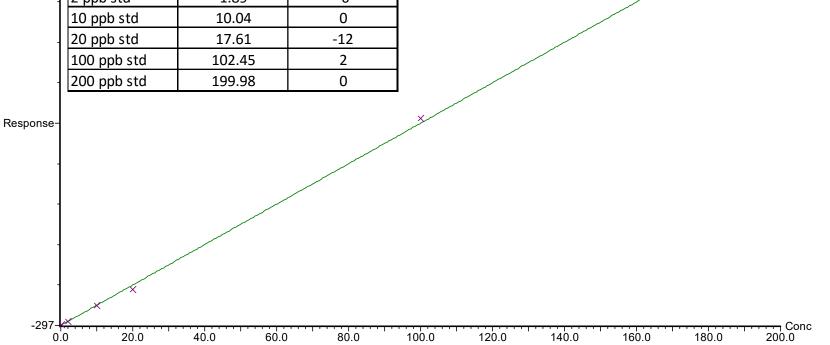

PAH water matrix

Pesticides water matrix – MS detection Pesticides EPA method 508 (site study) Method 8270 (site study)



HUMAN HEALTH I ENVIRONMENTAL HEALTH

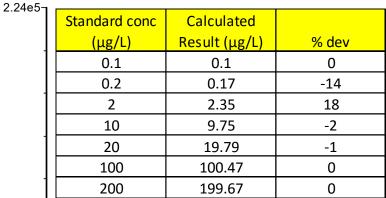

#### Extraction Volume: 1mL



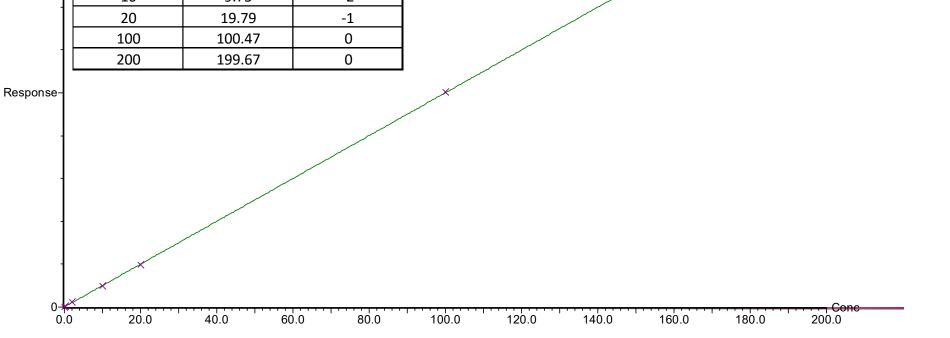



#### Chlordane – 0.2 ppb to 200 ppb

#### Extraction Volume: 1mL






#### Aldrin – 0.1 ppb to 200 ppb

Compound 6 name: Aldrin Coefficient of Determination: 0.999984 Calibration curve: 1119.20 \* x + 41.5440 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



#### Extraction Volume: 1mL







... efficient, productive and cost effective approach



# **Experiment and Results Method 508**

Experiments performed in environmental lab on Long Island. Since samples did not contain pesticides (③) relied upon surrogate comparison and matrix spike

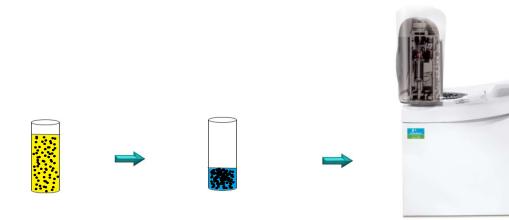


- Extract pesticides with 300mL of DCM prescribed by method
- Exp 1a: Remove 1mL aliquot of this extract. Inject 40uL
  - Omit concentration step. Was able to achieve detection limits without concentration.
  - Omit solvent exchange step. System is configured in inlet isolation mode so that the methylene chloride is purged through split vent in "cool" inlet (refer to slide 21).
- Exp 1b: Process the remaining 299mL as prescribed by method
  - Concentrate to 5mL
  - Solvent exchange to hexane.
  - Inject 2uL



|               | Exp 1a: surr=0.067µg/L<br>40µL Solvent Purge | Exp 1b: surr=20µg/L<br>2µL Splitless |
|---------------|----------------------------------------------|--------------------------------------|
| Sample Name   | TCX DCB                                      | TCX DCB                              |
| LFB           | 86 73                                        | 77 70                                |
| BLANK ON 3-25 | 91 79                                        | 80 71                                |
| 9607600       | 97 94                                        | 77 80                                |
| 9607980       | 87 90                                        | 77 88                                |
| 9607581       | 92 78                                        | 79 88                                |
| 9607497       | 94 98                                        | 74 83                                |
| 9607490       | 92 93                                        | 77 87                                |
| 9607601       | 96 88                                        | 78 81                                |
| 9607632       | 97 61                                        | 79 56                                |
| 9607670       | 92 82                                        | 81 76                                |
| 9607671       | 90 90                                        | 78 88                                |
|               |                                              |                                      |

IMAN HEALTH | ENVIRONMENTAL HEALTH


- 10 mL matrix spike extraction
- 1 liter matrix spike extraction
- Exp 2a: 10mL matrix spike at detection limit (0.02µg/L)
  - Extract with 3mL MeCl2. Inject 40µL
- **Exp 2b**: 1L matrix spike at detection limit
  - Extract with 300mL of MeCl2. Remove 1mL aliquot. Inject 40µL solvent purge
- Exp 2c: The remaining 299mL of exp 2b extract was concentrated to 5mL volume and then solvent exchanged into hexane (same procedure as exp 1b)
  - Inject 2µL splitless



#### Sample size decrease to 10mL



HUMAN HEALTH | ENVIRONMENTAL HEALTH



#### Enhance productivity and profits

- •10 mL of Sample
- Extract with 3 mL of MeCl<sub>2</sub>
- Inject !!!

Decrease solvent use and cost Enhance instrument uptime Less storage space for smaller containers Meet criteria! Eliminate laborious extractions Environmentally friendlier ©



12

HUMAN HEALTH | ENVIRONMENTAL HEALTH

|                      | Exp 2a              | Exp 2b                 | Exp 2c                  |
|----------------------|---------------------|------------------------|-------------------------|
|                      | 10 mL Extract       | 1L Extract (3/10 Conc) | 1L Extract (conc 1000x) |
|                      | 40 uL Solvent Purge | 40 uL Solvent Purge    | 2uL Splitless           |
| TCX (surrogate)      | 77                  | 88                     | 77                      |
| Gamma- BHC (Lindane) | 72                  | 71                     | 70                      |
| HEPTACHLOR           | 79                  | 70                     | 72                      |
| ALDRIN               | 76                  | 77                     | 76                      |
| HEPTACHLOR EPOXIDE   | 83                  | 81                     | 83                      |
| GAMMA CHLORDANE      | 94                  | 87                     | 90                      |
| DIELDRIN             | 77                  | 75                     | 83                      |
| ENDRIN               | 86                  | 80                     | 79                      |
| METHOXYCHLOR         | 106                 | 81                     | 87                      |
| DCB (surrogate)      | 66                  | 77                     | 70                      |



| Components      | Average Response | Correlation                   |
|-----------------|------------------|-------------------------------|
|                 | Factor (%RSD)    | Coefficient (r <sup>2</sup> ) |
|                 |                  |                               |
| TCX (Surrogate) | 2.5              | 0.9999                        |
| alpha-BHC       | 16.0             | 0.9997                        |
| gamma-BHC       | 12               | 0.9999                        |
| HEPTACHLOR      | 4                | 0.9999                        |
| ENDOSULFAN I    | 1.4              | 0.9999                        |
| DIELDRIN        | 5.2              | 0.9999                        |
| ENDRIN          | 2.7              | 0.9999                        |
| 4,4' DDD        | 4.5              | 0.9995                        |
| 4,4' DDT        | 4.8              | 0.9999                        |
| METHOXYCHLOR    | 16.0             | 0.9983                        |
| DCB (Surrogate) | 11.0             | 0.9997                        |





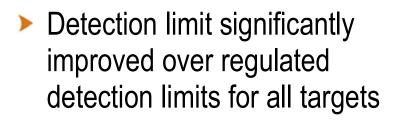
1

| Components      | Average Response | Correlation                   |
|-----------------|------------------|-------------------------------|
|                 | Factor (%RSD)    | Coefficient (r <sup>2</sup> ) |
|                 |                  |                               |
| TCX (Surrogate) | 2.5              | 0.9995                        |
| beta-BHC        | 4.0              | 0.9997                        |
| delta-BHC       | 19               | 0.9994                        |
| ALDRIN          | 11               | 0.9997                        |
| HEPT. OXIDE     | 2.2              | 0.9999                        |
| gamma-CHLORDANE | 2.0              | 0.9999                        |
| alpha-CHLORDANE | 1.6              | 1.0000                        |
| 4,4' DDE        | 7.4              | 0.9998                        |
| ENDOSULFAN II   | 2.1              | 0.9998                        |
| ENDRIN ALDEHYDE | 7.9              | 0.9994                        |
| ENDO. SULFATE   | 7.1              | 0.9999                        |
| ENDRIN KETONE   | 2.9              | 0.9995                        |
| DCB (Surrogate) | 9.5              | 0.9998                        |

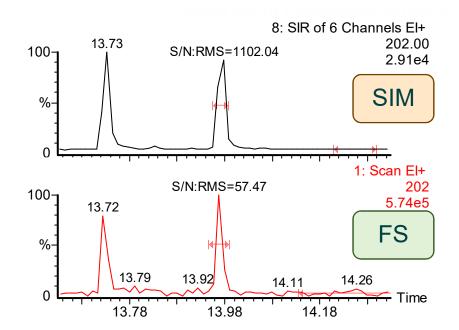
Enhancing Instrument uptime for EPA Method 8270



Injecting less matrix extends maintenance interval! More Clocks!


Increase profits by running more samples

... efficient, productive and cost effective approach


# 100mL sample volume

Collected at an Environmental Testing lab Experiments performed in 2003 ... older MS

#### Results Comparing 1L to 100mL

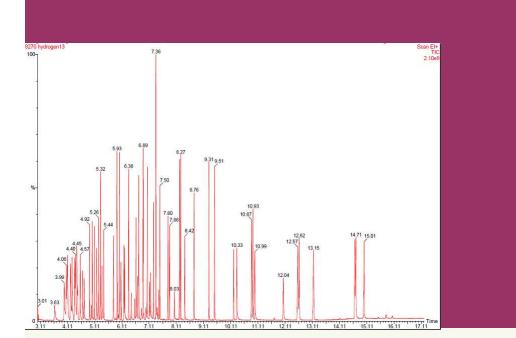


- More Clocks achieved than 1L extract because less matrix being injecting
- 1.0uL splitless injection



From Matrix spike Pyrene – 0.025 ppb (actual concentration) 100mL extract conc to 5mL




Increasing Productivity, Efficiency and Performance



- Meet required reporting limits while using less sample
  - New detector technology
  - SIFI (simultaneous full scan / SIM detection)
  - Larger injection volumes
- Inject less matrix cleaner system means enhanced instrument uptime increasing productivity
- Extract less sample reduce operating costs (less solvent, less glassware and less storage space required)
- Adds up to faster return on investment and a more productive laboratory with improved recoveries



... efficient, productive and cost effective approach



# Hydrogen vs Helium

Semi-Volatile Analysis

© 2016 Perkin Elmer

# Passing Criteria

- All targets quant and qualifying ions were compared in hydrogen versus helium and met criteria
- DFTPP criterion was met
- All other criteria were met

Acknowledgement: Thank you to Miles Snow for doing the work verifying hydrogen for 8270 criteria.



PerkinElme

For the Bett







????

The PerkinElmer Clarus SQ8 GC/MS

Contact Information lee.marotta@perkinelmer.com